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OSCILLATION PERIODS OF NEUTRON STARS

1=4
The recent discovery of celestial x-ray sources

Se=12
prompted various authors to propose possible

production mechanisms of these x-rays. In an earlier

12 ‘
communication, one of us suggested that some of the

X-ray emission might be associated with the mechanical
energy of radial oscillations of neutron stars. To inves-
tigate such a possibility, precise knowledge of the
oscillation periods is important. The study of the
possible effect of nuclear forces on such periods is

interesting in itself. The present communication presents

some reéults of such studies.

It is well known that general relativity is important
in such condensed bodies as neutron stars. Therefore,

the circular frequency for purely radial oscillations in
‘ 183=1s6

general relativity, as given by Chandrasekhar (the final

corrected expression), was used in our calculations.

Three types of nuclear forces were chosen for use in the

equation of state. One, designated "Skyrme," is a three-
18
body nuclear potential. The other two are neutron-neutron

17
potentials derived by Levinger and Simmons , and are

N

'
i
|

L
. (THRU) |
BER) !
SION NUM
(ACCES v
(CODE) !

56 ¢ o
{M —=AD NUMBER} b !

~ABA CR OR THX <
4x2n01
icoey)

¥

2
FAGILITY FORM 60

PR yig0.] TARE



XEROI
= Copy )

- 2.- ‘ i
designated VB and VY potentials. The case of non-interacting |
fermions was also considered for comparison. The models
with zero interactions are designated "ideal" gas models,
and the others with the three types of nuclear forces are

called the "Skyrme," V_, and VY type models, respectively.

8"
The properties of these models are more fully described
in a thesis’'and will be published in due coﬁrse;

The periods for the four kinds of models are shown
as a function of the stellar gravitational mass in Figure 1l;
the periods are expressed in milliseconds and the masses
are expressed in solar mass units. The broad horizontal
portion of each curve corresponds to a series of stable
neutron star models, The Skyrme-type stars have periods
of 0.2 to 0.3 milliseconds and the V& type stars have
periods of 0.4 to 0.5 milliseconds in the stable region.
The typical periods of the VB type models are about 0.3
milliseconds when the stars are massive, but for less
massive models the periodé are about 1 millisecond. The
periods for ideal gas models vary rapidly with mass,
decreasing with increasing mass to about 0.8 milliseconds.
Estimates of oscillation periods that can be obtained

‘ s 18
from the classical equations (order of milliseconds) are
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especially good for the ideal gas models. However, our o
present results show that we must resort to calculations
of the exact general relativistic expressions to obtain
more detailed quantitative information.

In a suitable equation of state the pressure is not
allowed to increase without limit as the density increases,
so that either the restriction p < e/3 or p < ¢ must be
imposed. The periods were calculated for both restrictions
on the equations of state and are shown in Figure 1. The
curves denoted by (1) represent the models with the limit

‘p < €/3 and those by (2), with p < ¢. The difference is
negligible over the major portion of the stable region
because these restrictions become applicable only near the
massive end of the stability region for some of the equations
of state used.

The square of frequency w2 is positive in a stable
region, becomes zero at the point of instability, and is
negative in the region of instabilitfarlﬁme period approaches
infinity at the boundaries of the stable region (one or
both ends of the curves in Figure 1l). The curve of the
Skyrme-type models with p < e/3, however, fails to show

this singularity at the massive end. Instead of going to
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infinity (i.e. wz = 0), the period approaches a finite
value, as infinite central density is approached, after
a number of damped oscillations. For this particular
model, instability never sets in at the high density limit.
All other models chosen for this investigation, however,
show a singularity at the point of the major mass maximum.

The behavior on the low mass side is more complicated.

"In order to obtain more quantitative information in this

region we mustvinclude electrons in our configuration.
All present models have a pure neutron configuration,
Therefore;'all curves in Figure 1 are terminated near 0.2
solar masses. .

In order to single'out the effect of nuclear forces

~on the periods, the following period normalization may be

used. The normalization factor,Tn)is defined as
'Tn = 21T/wn >
where
2

w,” = AGMR",?[sr-':t-ssnc'?R’l(l—gr- D] . )

The formula for wnz is the expression obtained for a

homogenous fluid sphere with a constant T and constant
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energy density, if one expands the formula5 for Wz,

subject to the condition 2GM/b2R<l. The third term in

the expression is therefore the general relativistic
effecé?, and the general relativistic effect on the periods
is accounted for in this way. The factor A is a correction
which accounts for the departure from homogeneity, and T

is the ratio o% specific heats.

In Figure 2, the normalized periods, T/Tn (with
T = % and A =tl), are plotted versus stellar mass. We note
thét the effeé;s of nuclear forces are shown more clearly
in this figure. Near ordinary nuclear densities the
Skyrme-type.éoténtial has the largest attractive term, .
which decreéses the pressure at a given density, the VY
type has an attractive term of intermediate magnitude, and
the VB type has the least attractive terﬁ. One conclusion
to be drawn from Figure 2 is that an attractive force
tends to decrease the oscillation periods.

The calculations presented here are intended only to
illustrate the importance of nuclear interaction corrections
to the equation of state, It seems likely that neutron star
vibration periods will bevless than would be calculated for

a gas of noninteracting particles. If thermal emission in
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the soft x-ray region should be detected from such objects,
then it will become desirable to attempt to detect and
measure vibration periods. With some additional indication
of the mass or radius of such objécts, these periods will
then give information about the nuclear forces in the

interiors of neutron stars.

Sachiko Tsuruta and James P. Wright
Smithsonian Astrophysical Observatory
Cambridge, Massachusetts

and
A.G.W, Cameron
Institute for Space Studies

Goddard Space Flight Center, NASA
: New York, New York
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